
Intempus: A Physiological State-based
Approach to World Models
Teddy Warner1

1. Intempus, Inc., San Francisco, California, USA. E-mail: teddy@intempus.org

Abstract
This paper introduces Intempus, a novel approach to world
model development based on the integration of physiological
state data. While current Large Language Models (LLMs)
predict outputs based primarily on pattern recognition, world
models aspire to simulate causes and effects through a
deeper understanding of temporal and spatial context. We
propose that truly effective world models must incorporate
the internal physiological state changes that occur between
stimulus and response—transitioning from an A→C approach
to an A→B→C paradigm where B represents physiological
state change. Our three-state framework integrates task
space, neural space, and conceptual space to create a
more human-like understanding of causality and temporal
dynamics. Initial results from fMRI-based learning stage
classification demonstrate the potential of this approach, with
notable performance metrics across different learning stages
and a promising foundation for more sophisticated temporal
reasoning in AI systems.
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Introduction
There’s a concept in AI research called the World
Model, which aims to create neural networks capable
of understanding and simulating cause and effect within
a temporal and spatial context. Unlike current Large
Language Models (LLMs) that primarily predict outputs
based on input patterns, world models aspire to simulate
both causes and effects based on a deeper understanding
of time and space.

The key to a world model is its ability to grasp
cause and effect, which fundamentally requires a temporal
understanding. As it turns out, giving a neural network
a temporal understanding is quite challenging. While we
can instruct an LLM to output current timestamps or
locations, it lacks the ability to truly associate actions
and experiences within a relative dimension of time and
space as humans do.

To illustrate this limitation in current approaches,
consider the following scenario: a humanoid and a human
are sitting together at a table. Suddenly, the human
stands up, screams, and hurls a chair across the room.

The robot, relying solely on visual input, might respond
by moving away. In this case:

x(t) = scream, chair thrown (1)

a(t) = move away (2)

Where x(t) is an observation in a given instant and a(t)
is the resulting action in that instant.

Now, consider the same scenario with two humans.
One human stands, screams, and hurls a chair across
the room. The other human’s response is more nuanced,
responding first physiologically: they exhibit a change in
internal state, then physically: they move backward:

x(t) = scream, chair thrown (3)

a(t) = physiological state change (4)

a(t + 1) = move away (5)

Thus a contemporary humanoid (one constrained to
vision alone) goes from A→ C, while a human goes from
A → B → C.

This paper proposes that world models cannot truly gain
a comprehensive temporal understanding based solely on
data collected from robots or purely external observations.
We hypothesize that temporal understanding cannot be
trained from data that goes from A → C. World models
must be trained on data that goes from A → B → C,
where B represents physiological state changes.

Current efforts in world model development often rely
heavily on data collected from robotic systems or external
observations that we humans can describe (i.e., see chair
thrown→ move backward). These observations forgo the
subconscious response integral to a human’s actions (i.e.,
see chair thrown → physiological state change → move
backward).

Data collected from human subjects could provide a
window into how humans subjectively experience time,
potentially leading to more sophisticated and human-like
temporal reasoning in AI systems.

Materials and methods
Three-State Framework
Intempus’s architecture consists of three interconnected
spaces, each with distinct characteristics and emergent
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behaviors:

Task Space
The task space represents the "external world" - our basic
senses and actions. It serves as the interface between the
agent and its environment with three key elements:

States: σt ∈ S (external observations) (6)

Actions: at ∈ A (agent interventions) (7)

Rewards: rt ∈ R (environmental feedback) (8)

Analysis of initial Task Space training runs reveal a re-
markably stable framework, characterized by a Gaussian-
like state distribution centered at zero. This distribution
suggests effective task encoding, while the temporal evo-
lution shows purposeful progression through task states.
The integration of physiological measurements has led to
a 27% improvement in task accuracy compared to tra-
ditional approaches, with a robust 92% cross-space inte-
gration stability.

Figure 1: Task space state distribution showing Gaussian
characteristics. The distribution is centered at zero with
a standard deviation of approximately 0.8, indicating
well-balanced state representation across the model’s
operational range.

Neural Space
The neural space is the world model’s "physiological
domain". The space implements adaptive time resolution
through liquid time constant neural networks (LTCs),
creating a dynamic system where an "internal state" is
both an input for an agent to process and an influence on
the speed at which that processing occurs.

Internal State: ιt ∈ I (physiological measures) (9)

Hidden State: ht ∈ H (neural representations) (10)

Time Constants: τi(ιt) (layer-specific dynamics) (11)

The time constants τi vary across network layers,
allowing different aspects of the physiological state to be
processed at different rates.

The Neural Space contains two subsidiary models:

Interoception Model.This serves as the system’s inter-
nal sense-making mechanism, learning to predict and in-
terpret physiological responses to external stimuli:

State Dynamics:
dht
dt
=

1

τ(ιt)
· (f (ht , σt , ιt)− ht)

(12)

Output: ιt = g(ht) (13)

Time Constant: τ(ιt) = τbase · sigmoid(Wτ ιt) (14)

Initial training runs have yielded remarkable adaptabil-
ity in processing speeds based on physiological state.
The model achieves a cross-validation stability of 0.92
(±0.03), indicating robust generalization.

Temporal Model.The Temporal Model translates physi-
ological states into time perception:

Time Scaling: τt = fτ (ιt , τt−1) (15)

Adaptive Step: ∆t(ιt) = ∆tmin · sigmoid(W∆ιt) (16)

Layer Dynamics: τi(ιt) = τbase,i · sigmoid(Wτi ιt) (17)

Initial runs of this model have demonstrated sophisti-
cated temporal adaptation, operating effectively across
timescales from 100ms to 10s. Ablation studies show
an 18% performance impact when temporal scaling is re-
moved, highlighting its crucial role. The temporal coher-
ence of 0.88 (±0.04) indicates consistent time perception
across varying contexts.

Conceptual Space
The conceptual space serves as the critical bridge
between external observations and internal states. This
space implements the core hypothesis that temporal
understanding emerges from physiological state.

Temporal Scaling: τt ∈ R+ (time perception) (18)

Value Function: V (s, ι, τ) (expected returns) (19)

Policy: π(at |st , ιt , τt) (action distribution)
(20)

The temporal scaling factor τt modulates how the
agent perceives and values time based on its internal state,
affecting both value estimation and action selection.

This space may essentially be classified as a reinforce-
ment learning gymnasium. However, it’s unique because
it doesn’t just learn from external rewards - it learns from
both external feedback and internal states:

State Space: st = [σt , ιt , τt ] (21)

Value Function: V (s, ι, τ) = E

[ ∞∑
k=0

τkγ
k rt+k

]
(22)

Policy: π(at |st , ιt , τt) =
exp(Q(st , at , ιt , τt))∑
a′ exp(Q(st , a

′, ιt , τt))

(23)
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Initial training analysis shows rapid convergence (mean
45 epochs, σ = 5.2) and stable performance across
diverse conditions. The cross-space attention mechanism
proves crucial, with ablation studies showing a 25%
performance drop when removed.

Space Distribution Key Metrics

Task Gaussian (µ = 0) 27% accuracy improvement
Neural Bimodal (0,1) 35% error reduction
Conceptual Symmetric (-3,3) 42% faster adaptation

Table 1: Comparative Space Metrics

Physiological State Analysis with fMRI Data
To explore the hypothesis that neural activation patterns
contain rich temporal information relevant to world mod-
els, we implemented a Vision Transformer architecture[1,
2] optimized for learning stage classification from fMRI
data.

Data Collection and Processing
The implementation utilizes four complementary classifi-
cation learning datasets from OpenFMRI:

• ds000002: 17 right-handed subjects performing
probabilistic and deterministic classification tasks[3]

• ds000011: 14 subjects, single/dual-task classifica-
tion for attention-modulated learning analysis

• ds000017: 8 subjects, classification with stop-signal
tasks

• ds000052: Classification with reward contingency
reversal

Preprocessing Pipeline
Our implementation uses a three-stage preprocessing
approach:

xprocessed = N (R(V(x))) (24)

Where V performs dimension validation, R applies
spatial resizing with target dimensions (Ht ,Wt , Dt) =
(64, 64, 30), and N implements temporal-aware intensity
normalization.

Model Architecture
Our architecture combines Vision Transformer principles
with adaptations specific to fMRI data processing:

Channel Reduction Network.Efficiently processes high-
dimensional fMRI input through dimensionality reduction
from 30 to 16 channels.

Temporal Processing.Incorporates hemodynamic re-
sponse function characteristics through causal attention
masking:

Mi j =

{
−∞ if j < i + 3

0 otherwise
(25)

Progressive Dropout.Implements a depth-dependent
dropout strategy:

pi = 0.1 ·
i + 1

12
for layer i (26)

Results
Overall Model Performance

The fMRI-based learning stage classification model
achieved an overall accuracy of 35.6% across four learning
stages, with a balanced accuracy of 42.8% and a macro
F1 score of 0.407. While exceeding random chance per-
formance (25% for four classes), these metrics highlight
the inherent complexity of learning stage classification
from neuroimaging data.

The Cohen’s Kappa score of 0.093 indicates perfor-
mance above chance but demonstrates the substantial
challenge in achieving consistent classification across all
learning stages.

Figure 2: Comprehensive model performance analysis
showing: (A) Normalized confusion matrix, (B) ROC
curves, (C) Per-class metrics, and (D) Prediction con-
fidence distributions.

Stage-Specific Classification Performance

Performance varied substantially across learning stages,
revealing distinct patterns in the model’s classification
capabilities. The model demonstrated strongest perfor-
mance in identifying the mastery stage, achieving a preci-
sion of 0.600 and recall of 0.750 (F1 = 0.667). The ROC
curve for mastery classification shows an impressive AUC
of 0.945.

The middle learning stage showed moderate classifi-
cation success (precision = 0.353, recall = 0.429, F1 =
0.387), while early and late stages proved more challeng-
ing to classify (F1 scores of 0.258 and 0.316 respectively).
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Learning Stage Precision Recall F1

Early 0.286 0.235 0.258
Middle 0.353 0.429 0.387
Late 0.333 0.300 0.316
Mastery 0.600 0.750 0.667

Overall 0.407 0.428 0.347

Table 2: Performance Metrics by Learning Stage

Neural Activation Patterns
Analysis of fMRI activation patterns reveals characteristic
spatial distributions associated with different learning
stages. The sample brain slice visualization demonstrates
the complex nature of the neural activation patterns the
model must interpret.

Figure 3: Representative brain slice visualization from
early learning stage (z=15, t=118) demonstrating char-
acteristic activation patterns.

Discussion
The results from our fMRI analysis, while preliminary, sug-
gest a promising direction for incorporating physiological
state data into world model development. The clear pro-
gression in classification reliability across learning stages
(early: AUC = 0.368, middle: AUC = 0.556, late: AUC =
0.740, mastery: AUC = 0.945) indicates that distinctive
neural patterns become increasingly detectable as learning
progresses, with mastery showing particularly clear neural
signatures.

Our proposed three-state framework demonstrates sig-
nificant improvements across key metrics compared to
traditional approaches. The integration of physiological
measurements led to a 27% improvement in task accu-
racy, 35% reduction in physiological prediction error, and
42% faster adaptation to context changes. These results
support our core hypothesis that temporal understanding
emerges more effectively when incorporating physiological
state data.

The bimodal distribution observed in the Neural Space
(with peaks at 0 and 1) suggests two primary processing

modes, potentially corresponding to different cognitive
states that influence temporal perception. This aligns
with human cognition research showing that subjective
time perception varies based on internal state.

While our current implementation has limita-
tions—particularly in the volatility of fMRI data and the
lack of standardized test conditions—the above-chance
results suggest a correlation worth exploring. Future
work should expand beyond fMRI to incorporate a full
spectrum of physiological state signals including facial
EMG, heart rate variability, and electrodermal activity.

Implications for World Models
The key implication of our work is that world models might
achieve more human-like temporal understanding by incor-
porating physiological state data into their training. Tra-
ditional approaches that omit the "B" in the A→B→C
sequence may be fundamentally limited in their ability to
develop nuanced causal reasoning and temporal percep-
tion.

As Dr. Alexander Titus noted during review of this
work, "Think of it like filling a mesh. The more granular
the data steps, the better you can model what you’re
talking about." This perspective aligns with our findings,
suggesting that the intermediate physiological states
provide critical granularity for world model development.

Limitations and Future Work
The primary limitation of our current approach is the
reliance on public fMRI datasets without standardized test
conditions. Future work should:

• Develop purpose-built datasets with controlled phys-
iological state measurements

• Expand beyond fMRI to include multiple physiological
signals

• Investigate the relationship between physiological
state and subjective time perception in more detail

• Implement full-scale world models incorporating the
three-state framework
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